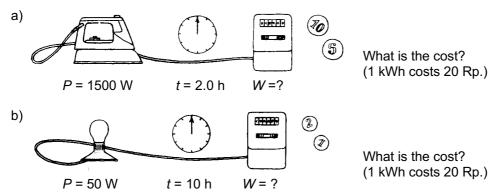

1. Calculate the missing values.


- 2. The energy consumption information on an electric device reads 75 W/220 V. This means that it consumes 75 W if connected at 220 V (operating voltage).
- a) Calculate the electric current.
- b) What is the resistance of the light bulb?
- 3. Find a formula for calculating the electric power from
- a) resistance and voltage
- b) resistance and current

Hint: use
$$P = U \cdot I$$
 and $R = \frac{U}{I}$

- 4. An electric device consumes 1.00 kW when connected to an 220 V power outlet (assume resistance is a constant).
- a) What is the electric current?
- b) Calculate the resistance.
- c) What would the electric current be at 110 V?
- d) What would the electric power be at 110 V?
- e) What would the electric current be at 440 V?
- f) What would the electric power be at 440 V?
- 5. Calculate the missing quantities. Please write down the formula, solved for the wanted quantity.

	voltage	current	resistance	work	time	power
a)		2.00 A	12.0 Ω		2.00 min	
b)	150 V	6.00 A			80.0 s	
c)	220 V			13.0 kJ	1.50 h	
d)		10.0 A	600 Ω	5.00 kJ		
e)	4.00 V			120 J		20.0 W
f)		20.0 mA			1.00 Tag	90.0 mW

6. Calculate the missing quantities (work in J and in kWh).

- 7. The nuclear power plant in Gösgen has a power output of 1'020 MW. (M = Mega = 1'000'000)
- a) Calculate the output of electric energy per day (in J and in kWh)?
- b) Calculate the price of the daily electric energy output (1 kWh costs 20 Rp.).
- 8. An electric current of 0.20 A flows through the filament of a small light bulb which is connected to 4.5 V battery. After 8.00 h the battery is "empty"; it cost 2.00 Swiss francs.
- a) Calculate the amount of charged that passed through the light bulb.
- b) What is the power consumption?
- c) How much energy was consumed?
- d) Calculate the cost of 1 kWh from the battery.
- e) What would have been the cost of energy if it had been provieded by power outlet?
- 9. Calculate the resistance of a light bulb at operating temperature labeled as
- a) 100 W/220 V
- b) 40 W/220V
- 10. The efficiency of an electric motor is 70.0 %.
- a) What is the total energy input, if the useful energy output is 460.0 kJ?
- b) What is the extracted power output, if the power supplied is 50.0 kW?
- 11. A crane's electric motor (η = 75 %) lifts up a load of 400.0 kg (h= 15.0 m).
- a) What types of energy do occur here? (*Hint*: there are three types.)
- b) Which form of energy is the total energy input and which form of energy is useful energy? Which form of energy is considered as «waste»?
- c) Calculate the amount of work required for lifting the load.
- d) What is the amount of useful energy?
- e) What amount of energy input into the motor is required for lifting the load?
- f) What is the cost of lifting the load?

olutions:						
. a) 36 W	b) 3.0 A	c) 12 V	d) 0.45 A			
. a) 0.34 A	b) 645 Ω					
. a) 4.55 A	b) 48.4 Ω	c) 2.27 A	d) 250 W	e) 9.09 A	f) 4'000 W	
a) 24.0 V, 576	a) 24.0 V, 5760 J, 48.0 W		b) 25 Ω, 72.0 kJ, 900 W		c) 10.9 mA, 20.1 kΩ, 2.41 W	
d) 6.00 kV, 0.0	d) 6.00 kV, 0.0833 s, 60.0 kW		e) 5.00 A, 0.800 Ω, 6.00 s		f) 4.50 V, 225 Ω, 7.78 kJ	
a) 10.8 MJ = 3.0 kWh, costs 60 Rp.		b) 1.8 MJ = 0.50 kWh, costs 10 Rp.				
. a) 2.45 · 10 ⁷ k	Wh = $8.81 \cdot 10^{13} \text{J}$	b) 4'896'000	Fr.			
. a) 5'760 C	b) 0.900 W	c) 25.9 kJ = 7.20 Wh		d) 277.80 Fr.	e) 0.144 Rp.	
. a) 484 Ω	b) 1'210 Ω	,		,	, .	
0. a) 657 kJ	b) 35.0 kW					
1. c) 58.9 kJ	d) 58.9 kJ	e) 78 kJ	d) 0.43 Rp.			