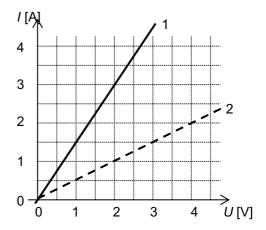
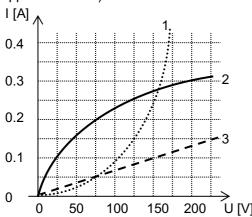
- 1. Complete the following sentences (larger/smaller):
- a) The larger the resistance (at equal voltage), the the electric current.
- b) The larger the voltage (at equal resistance), the the electric current.
- c) The smaller the resistance (at equal voltage), the the electric current.
- d) The smaller the voltage (at equal resistance), the the electric current.
- 2. Calculate the missing quantities. Don't forget to write down the formula you used for your calculation.


	voltage	current	resistance	charge	time
a)		2.00 A	12.0 Ω		2.00 min
b)	150 V	6.00 A			80.0 s
c)	220 V		200 Ω		5.00 s
d)		10.0 A	600 Ω	25.0 C	
e)	4.00 V			300 C	1.00 min
f)		20.0 mA	225 Ω	1'728 C	

٥.	i wo voltage	sources are	taiking about	inemseives.	Complete the	sentence


a)	Battery: «I am a voltage source for(direct/alternating)
	current. I push the electrons(back and
	forth/always in the same direction). My positive and my negative pole
	(remain in the same place/change places all the time).»
b)	Power outlet: «I am a voltage source for(direct/alternating)

- 4. A current of a magnitude of 0.100 A is flowing through a resistor at a voltage of 40.0 V for 1.00 min.
- a) What is the magnitude of the electric resistance?
- b) Calculate the amount of charge that passed through the resistor.
- c) How much work did the voltage source perform on the charge?

- 5. Depicted to the right you can see a graph describing how the electric current depends on the voltage in two different wires of constantan.
- a) Which one of the wires shows more resistance: 1 or 2?
- b) How much voltage is needed for a current of 3.0 A to flow in wire 1?
- c) How much current flows in wire 2 at a voltage of 13.0 V?
- d) Depict the graph of wire 3 (constantan) with a resistance of $R = 1.0 \Omega$.

- 6. A flashlight operates at a voltage of 4.5 V and its light bulb has a resistance of 90.0 Ω . How long does it take for 10'000 electrons to flow through a cross section area in the wire of the light bulb?
- 7. Here are the current-voltage characteristics of three electric conductors. (A current-voltage characteristic is a graph showing how the current through a wire depends on the voltage applied across it).

- a) In which ones of the wires is the electrical resistance a constant?
- b) How does the resistance change in the other wires? Does it increase or decrease with increasing voltage?
- c) What materials could 1, 2 and 3 be?
- d) Calculate the electrical resistance of each of the three conductors at 75 V, 125 V and at 0.10 A.

Solutions:

5. b) 2.0 V c) 6.5 A

3: 1500 Ω 1500 Ω 1500 Ω